Physical Design Methodology Best Practices
NANOMETER AND RTL-DOWN CLOSURE

Aurangzeb Khan
Simplex Solutions, Inc.

IEEE DATC Electronic Design Processes Workshop
Monterey, CA

April 9-10, 2001
SOC design opportunities & challenges

- **First-to-Market & Volume SOCs → Business Success**
 - No market ... for a 2nd to market
 - 3-months late = $500M loss

- **Limited design capacity**
 - Competitive new products roadmap
 - Customize products
 - Access new processes first
 - Multiple sourcing

- **Rapid increase in design complexity**
VLSI → SOC: Rapid increase in design complexity

- 0.5um → 0.18um
- 5x5 mm² → 21.7x21.3 mm²
- ~0.8 → 287.5M transistors
- 3LM → 6LM
- ~50 → 150 MHz (#>500MHz)

#: Cirrus Logic, Inc. IC, 3Ci™
VLSI → SOC: Hierarchical design approach

- SOC Design = IP block creation + block integration

- Enable concurrent engineering
- Reduce development complexity
- Simplify program management
- Leverage proven IP blocks
 - Improve TTM, TTV and quality
 - Reduce technical, schedule risks
- Leverage platform infrastructure
 - Verification, Validation
Top-level SOC design methodology

- **Functional design** → hierarchical
- **Electrical / physical design** → hierarchical
- **IP leverage; Customer-specific design**
Block-level design methodology

- Architectural optimization (timing)
- Inter-group buses, bandwidth
- Clock, SI, test; validation

- Custom WLM (or better)
- Power, clock, test reqmts. added
- Critical blocks (e.g., ECC)

- Top-, block-specific CWLM-based (or better)
- With added constraints

- Top, block clock design
- I/O driver, padring design
- Noise minimization, isolation
- Power distribution (Internal, I/O)
- Board-level timing, SI

- Scan stitching, re-ordering

- Full RC back-annotation
- Hierarchical “black-box” models
Sony Computer Entertainment: GS® I-32

- Enhanced architecture: 8x higher eDRAM vs. PS®2 GS®

- Performance
 - eDRAM Bandwidth = 48 GB/s
 - Buses >2K bits wide
 - Render 75M polygons/s

- SOC integration
 - 280M + 7.5M transistors
 - 21.7 x 21.3 mm²

- Scale
 - >400K components
 - 11 blocks, 31K-218K gates
 - >68K flip-flops
 - >500K signal nets
 - >2K nets >10 mm. long

- 0.18 um, 6-metal CMOS
Design approach

- Fully-hierarchical design: Netlist to tape-out in 10 weeks

Design challenges
- Power distribution
- Clock architecture
- Timing design
 - Load modeling
 - Delay calculation
- Signal Integrity
 - Buffer insertion
 - Crosstalk
Accurate fully-hierarchical delay calculation

- Fully-hierarchical block-based timing analysis
 - Analyze large designs (scalable capacity)
 - Enable concurrent design
 - Faster timing convergence, verification (STA)

- Signal paths traverse hierarchy
 - Block inputs with ~0 – 2 mm. metal → RC delay

- Model block boundary pin input RC as C_L
- C_L → timing inaccuracies when RC significant
Accurate fully-hierarchical timing

- \(C_L \) over-estimates RC delay
 - Latent hold time defects
 - Setup \(\rightarrow \) overdriven
- ECSM \((C_{eff(50\%)}) \) fits SPICE at threshold
- ECSM \(\rightarrow \) \(\approx 2\% \) correlation to SPICE for complex topologies

Diagram Description

- Voltage (V) vs. Time (ns) graph
- \(C_{eff(50\%)} \)
- \(C_L \)
- \(B1 \)
- \(B1' \)
- \(IC \)
- \(+2\% \) correlation between ECSM and SPICE

Graph Details

- Voltage range: 0 to 15 V
- Time range: 0 to 1.6 ns
- Delay range: 1.43 to 1.56 ns
Signal integrity

- **Insert buffers ~1.5 - 2.5 mm.**
 - Bound timing uncertainty
 - Reduce total delay

- **Address impact in Static Timing Analysis**
 - Reduce setup time margin
 - Bounded hold time margin
IC design → design methodology, technology

- Hierarchical (mixed-signal) design
 - Fully-hierarchical timing: Enhance concurrent design

- Power distribution

- Clocking architecture

- New design technology
 - Nonlinear delay calculation technology
 - Black-box, gray-box modeling
 - Signal integrity
 - RC transmission line effects
 - Crosstalk management
 - Buffer insertion

- 0.15um – 0.13um work
 - Technology validation, signal integrity, RLC, substrate, others

- Focus on silicon engineering: First silicon success
Related reading

We greatly appreciate the support of:
- Cirrus Logic, Inc.
- Sony Computer Entertainment, Inc.
- Sony Corporation Semiconductor Network Company
- Sony Kihara Research Center, Inc.

Registered trademarks and copyright material of Cirrus Logic, Inc., Sony Computer Entertainment, Inc. and Sony Corporation used with permission

All rights are reserved by the respective companies
- No part of this material may be used without the prior written consent of Cirrus Logic, Inc., Sony Computer Entertainment, Inc., Sony Corporation and Simplex Solutions, Inc.