2.5D/3D-IC Update

Electronic Design Process Symposium
Monterey, CA, April 17, 2014

Herb@eda2asic.com
AGENDA

• Introduction

• Why do we need 2.5D/3D Technology?
 – Business reasons
 – Technical considerations

• 2.5D/3D key benefits and challenges
 – Application-specific benefits
 – Challenges

• 2.5D/3D EDA vendor updates
 – Si2 Open 3D TAB
 – Basic 2.5D/3D Design Flow
 – Updates from: Ansys, Atrenta, Cadence, Docea, eSystem, Mentor, MicroMagic, Synopsys

• Summary, Q & A
Packaging Alternatives at OSATs*

~1980s

Mostek MK 38P70

2,500 µm contact spacing

~1990s

PoP

~2000s

SiP

~2010

Side-by-side dice on an Interposer, also called “2.5D-IC”

Vertically stacked dice, called “3D-IC”

~25 µm contact spacing

Source: YOLE

http://www.i-micronews.com/lectureArticle.asp?id=8836
Best of Both Worlds

Bumping Hierarchy* in Flip Chip & related 3D Packaging Solutions as of 2013

* : SOURCE: YOLE Developpment, France

Geometries range from 10 to 800 um !
Monolithic vertical memories are in development as building block for 2.5D/3D-ICs. Monolithically integrated logic requires additional EDA capabilities to succeed. Monolithic integration of heterogeneous functions --- TBD?
• Introduction

• **Why do we need 2.5D/3D Technology?**
 – Business reasons
 – Technical considerations

• 2.5D/3D key benefits and challenges
 – Application-specific benefits
 – Challenges

• 2.5D/3D EDA vendor updates
 – Si2 Open 3D TAB
 – Basic 2.5D/3D Design Flow
 – Updates from: Ansys, Atrenta, Cadence, Docea, eSystem, Mentor, MicroMagic, Synopsys

• **Summary, Q & A**
Silicon Cost per 100 Million Gates

Cost per Gate Trend with Reduction in Feature Dimensions

- 90 nm: $4.01
- 65 nm: $2.82
- 40 nm: $1.94
- 28 nm: $1.40
- 20 nm: $1.42
- 16/14: $1.62

Source: International Business Strategies, Inc.

http://www.eetimes.com/author.asp?section_id=36&doc_id=1321674&image_number=1
eda2asic Shrinking Reaches Complexity Limit

Fig 1: Moore's Curves

- 1962
- 1965
- 1970

x = “Sweet-Spots” of the Cost per Component in an IC

“2D ICs” are hitting economic COMPLEXITY LIMIT !!!

Partitioning into smaller dice increases # of gross dice per wafer and yield ➔ Both reduce total unit cost

http://www.newelecronics.co.uk/electronics-technology/the-economics-of-chip-manufacture-on-advanced-technologies/35562/
Many systems need non-digital functions to interact with the real world.

Derived from:

ITRS Roadmap
• Introduction
• Why do we need 2.5D/3D Technology?
 – Business reasons
 – Technical considerations
• 2.5D/3D key benefits and challenges
 – Application-specific benefits
 – Challenges
• 2.5D/3D EDA vendor updates
 – Si2 Open 3D TAB
 – Basic 2.5D/3D Design Flow
 – Updates from: Ansys, Atrenta, Cadence, Docea, eSystem, Mentor, MicroMagic, Synopsys
• Summary, Q & A
<table>
<thead>
<tr>
<th>Market</th>
<th>Benefit</th>
<th>Low Power Dissipation</th>
<th>High Bandwidth CPU <-> DRAM</th>
<th>Low Latency IC <-> IC</th>
<th>Heterogeneous Integration</th>
<th>Form-factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellphones and esp. Smartphones</td>
<td></td>
<td>★★★</td>
<td>★★</td>
<td>★</td>
<td>★★★</td>
<td>★★★★</td>
</tr>
<tr>
<td>Compute Servers, Network Routers</td>
<td></td>
<td>★★★</td>
<td>★★★</td>
<td>★★★★★</td>
<td>★★</td>
<td>★★</td>
</tr>
<tr>
<td>Tablets and other Mobile Devices</td>
<td></td>
<td>★★</td>
<td>★★</td>
<td>★</td>
<td>★★★</td>
<td>★★</td>
</tr>
<tr>
<td>Standard PCs and Workstations</td>
<td></td>
<td>★★</td>
<td>★★</td>
<td>★</td>
<td>★★★</td>
<td>★★</td>
</tr>
<tr>
<td>Automotive Applications</td>
<td></td>
<td>★</td>
<td>★★</td>
<td>★★★★★</td>
<td>★★★</td>
<td>★★</td>
</tr>
</tbody>
</table>

Additional decision factors: Unit Cost, System Cost Savings, NRE, Time-to-profit, Risk,...
Multi-Physics Design Challenges

<table>
<thead>
<tr>
<th>Materials</th>
<th>CTE (ppm/°C)</th>
<th>Young's Modulus (GPa)</th>
<th>Poisson's Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>2.8</td>
<td>131</td>
<td>0.28</td>
</tr>
<tr>
<td>Copper</td>
<td>17.0</td>
<td>117</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Source: A. Wilde, P. Schneider, P. Ramm, DTC 2010

2D SoC, 2.5D or 3D-IC?

Decision Criteria & Risks

Business
- System Cost Savings / ROI
- NRE
- Unit Cost
- Time to Profit
- Market Value
- Internal Resources

Technical
- Power Dissipation
- Battery Life
- Size + Weight
- Formfactor
- Integration of Logic + Memory + Analog + MEMS,…

Supply Chain
EDA & IP – An Important Bridge

Electronic System Vendors

Semiconductor Vendors

Design Companies

 Manufacturing Companies

EDA & IP

$300 B

$7 B

$40 B

$40 B

$10 B

$700 B

$3,000 B

Electronic System Vendors
Crossing the Chasm

Peak of inflated expectations

The Big Scary Chasm

Smaller Chasm

Technological Trigger

Peak of inflated expectations

Plateau of productivity

Slope of enlightenment

Trough of disillusionment

Innovators

Early Adopters

Early Majority

Late Majority

Laggards

Source: Jeffery Moore, 1991

Where is 2.5D and 3D?
• Introduction
• Why do we need 2.5D/3D Technology?
 – Business reasons
 – Technical considerations
• 2.5D/3D key benefits and challenges
 – Application-specific benefits
 – Challenges
• 2.5D/3D EDA vendor updates
 – Si2 Open 3D TAB
 – Basic 2.5D/3D design flow
 – Updates from: Ansys, Atrenta, Cadence, Docea, eSystem, Mentor, MicroMagic, Synopsys
• Summary, Q & A
The Open3D Technical Advisory Board (TAB) was chartered to develop standards to support the design of 2.5D interposer-based packages and full 3-D stacked-die assemblies. Open3D TAB is scoped to define open standard interfaces and formats to enable interoperable 2.5D and 3D design flows, providing common interfaces, but not infringing upon any proprietary algorithms, products, or methodologies based on Si2’s member-approved and well-accepted IP Policy. The Open3D Technical Advisory Board (TAB) participation draws from a wide range of the supply chain, including fabless leaders, packaging / OSAT, foundries, and system / OEMs. Open3D will also be engaging a number of experts across the research and academic community for their domain knowledge.

Major Accomplishments - 2013

- **Si2 3D-IC Design Exchange Format Standard for Power Distribution Network (PDN)**
 PDN describes a unified interface protocol for both Power/Ground and signal ports for die-2-die, die-2-package and package-2-PCB interfaces. This also allows the creation of compact SPICE-level descriptions to aid in the design, analysis and optimization of the resulting networks that define these interfaces to ensure they meet the requirements for power and signal integrity.

- **Si2 3D Thermal Constraints Standard**
 The purpose of the Thermal Design Exchange Format is to facilitate thermal analysis to predict the time-varying average temperature and temperature variation of various locations within the stack, depending on a set of heat-loads.

https://www.si2.org/open3d_index.php
Plans for 2014

• Pathfinding
An architectural planning standard for Through Silicon Via (TSV) models for interacting electrical, thermal and mechanical stress. The 3D TAB plans to release the pathfinding standard in the first half of 2014.

• Signal integrity and physical verification
In 2.5D and 3D ICs, signal integrity becomes very important, particularly when one has to account for the effects of a dense array of through silicon vias (TSV). Physical verification, likewise, is also challenged by the increased densities of “More than Moore” and by the challenges of TSV’s. It is expected that this last effort will be a joint effort between the Open3D TAB and the DFM Coalition. If initiated, the goal of this effort will be to advance the existing OpenDFM standard to accommodate the needs of 2.5D and 3D technologies.

Open3D TAB Members

Advanced Micro Devices
Altera
ANSYS
Atrenta
Cadence Design Systems
Fraunhofer Institute
GLOBALFOUNDRIES
Helic
IBM
Intel
Invarian
Mentor Graphics
Qualcomm
R3 Logic
SEMATECH
STMicroelectronics
Texas Instruments

https://www.si2.org/open3d_index.php
Basic 2.5D/3D Design Flow

Inputs

- **Availabilities, technical- and cost estimates**
 - Constraints:
 - Materials
 - Wafer-fab
 - Assembly
 - Test

System Specification

- Plan System Architecture
- Path-Finding, Partitioning into ICs
- Floor Planning of Individual ICs
- Logical- & Physical Implementations
- Logical- & Physical Verifications
- Packages & PCB Development

Release to Manufacturing

IC Design Steps

System Design Steps

Key Design Challenges

- Complexity
- Power Density / Heat
- PI and SI
- Noise, Coupling
- Testability
- Multi-physics effects
RedHawk-3DX: Concurrent and CPM-based 2.5D / 3D IR and Dynamic Voltage Drop Analysis

- Supports multi-die design with corresponding process data, including heterogeneous technologies
- Analyze impact of shared P/G nets and decap in interposer on memory and logic die
- Utilizes Chip Power Model (CPM™) - a die model with RLC network and current profile, generated by RedHawk™ or Totem™
- Enables simple hand-off and fast turn-around-time
2.5D / 3D-IC Thermal Integrity Methodology

RedHawk/Totem
Chip Thermal Model

Sentinel-TI
Package
Converged Package T* Conducted Heat

Power Map
Thermal Boundary Condition

Icepak
Board/PCB
System-level thermal Boundary Heat Dissipation

Thermal Profile

http://www.apache-da.com/products/redhawk/redhawk-3dx
Atrenta Early 3D Design Planning Tool

- Early exploration flow
- Inputs: incomplete design spec, initial 3D configuration, system constraints and technology
- Performs standard (synthesis, P&R) plus 3D-IC specific tasks (partitioning, TSV/µbump planning, 3D floorplanning, P&R)
- Design characterization
- Outputs: stack configuration, design constraints, floorplan
Design Space Exploration and Metrics

- **System, technology, and implementation exploration**
 - Face-up vs. face-down orientation of the dies
 - Use of passive/active interposers
 - Use of RDL layers
 - Explore different number of layers to achieve design closure (timing and congestion)
 - Multiple technology nodes
 - Different size and pitch for TSVs

- **Floor-planning system in the 3D stack**
 - Constraints between blocks
 - Different TSV placement strategies

- **Customizable cost models to evaluate the quality of results (QoR)**
 - Power estimates, area reports, wiring congestion, timing, thermal and stress reports

http://www.atrenta.com/
What’s needed in 3DIC Design Methodology

- System Level Exploration
- 3D Aware Die Floorplan
 Optimize power & TSV/Bump locations
- Die Implementation Placement, Optimization and Routing
- Multi Die Extraction & Analysis
 Manage Power, Thermal and SI
- DFT for 3DIC Stack & Diagnostics
- Silicon Package Co-Design

Device	Data Source
BGA | BGA.txt from Cadence APQ
Si interposer | Created on-the-fly
Die Slice 1 | LEF/OrbitO 10view
Die Slice 2 | ASCII data
Cadence 3D/2.5D Solutions with flexible Implementation Cockpits

SOC entry point
- Virtuoso
- PVS
- QRC
- ET
- RC
- Wide IO/H BM

Virtuoso entry point
- Virtuoso
- Allegro
- Tempus
- Voltus
- ET
- Wide IO/H BM
- RC

System entry point
- Allegro
- Spectre
- UltraSim
- PVS
- Wide IO/H BM
- QRC
- RC
- Tempus
- ET
- Voltus
Cadence 3D-IC Integrated Solution

Complete Implementation Platforms for flexible Entry Point and Seamless Co-design
Using OpenAccess, EDI, Virtuoso™ each has dedicated 3DIC functions that work together, plus co-design with Cadence SiP tools for complete End to End implementation including early stage system exploration and feasibility
3D-IC Planning using OrbitIO

Full Spectrum Analysis Capability
RC/ET DFT and ATPG for 3DIC
Voltus/Tempus/QRC Digital Analysis Tool
Virtuoso™ Based Full Spice Simulation in multiple processes concurrently
SiP/Sigrity™ based Extraction, SI, and PI System/Package Analysis
PowerDC Thermal Analysis
Docea solutions

Explore Validate Track

To secure power and thermal specifications of complex systems
Increasing thermal issues

Technology scaling => higher power density

3D stacking with TSV => greater thermal issues

MPSoC architectures

Dynamic applications, variable execution time

Power management solutions (DVFS), can even worsen thermal properties!

⇒ Thermal mitigation schemes must be proposed at design time
Architecture Exploration: Power/Thermal/Performance Trade-off

- Converge on design targets earlier and optimize performance

- Voltage/Clock Domain Analysis
- Power/Thermal Management Policies
- Performance vs. Power trade-off
- HW/SW partitioning
- Power Tracking per Use case
- VR, Power Delivery Efficiency
- Leakage Power-Temp Coupling
- Floor plan and Sensor Placement
- Task Scheduling and OS/Application Interaction
- ID Hot Spots and Design tradeoffs
Path Finding YOUR solution

How do you choose the right technology to meet performance goals?
- 3D Vs 2.5D Vs 2D
- Flip chip Vs Wire Bond
- Microbumps Vs Solder Bumps
- Silicon Vs Glass Interposer

For a technology: how do you decide the optimum structure?
- Via Array topology
- RDL topology
- Signal/PDN Assignments

For a technology and structure: how do you account for?
- Process variations
- Interactions

Requires 1000s of tests early in the design cycle

Using existing tools are:
- Expensive and time consuming
- Requires expert staff, many licenses and machines
- Restricts exploration

Try “3DPF”, specifically created for Path Finding requirements!
“Best technical simulation GUI I’ve ever used. It is quick, responsive, logically organized, and intuitive…..I do really like it.” *(From a large IC Foundry)*

“Experiments are much easier to set up than with competing tools, dramatically reducing setup time costs.” *(From a large IC Foundry & large IC Company)*

“Similar to other commercial tool responses but with less CPU time” *(From a large IC Company)*

For an easy test drive, contact us at: info@e-systemdesign.com

Other 2.5/3D white papers and videos: http://www.e-systemdesign.com/Collateral.html
Calibre 3DSTACK Summary

- Maintains standard DRC, LVS, PEX verification processes to verify independent die
- Performs 3D interface verification
 - Verify physical: offset, rotation, scaling, etc...
 - Trace connectivity of interposer or die-to-die
- Benefits
 - Minimal disruption to existing verification flows
 - Superior performance and memory vs. “mega-merge”
 - Simple debugging
 - Maximum flexibility

http://www.mentor.com/solutions/3d-ic-design/
3DIC Flows and Models for Analog and Digital

Analog flow
- Accurate TSV model
- Treat TSV as a LVS device
- LVS device = Spice subcircuit
- Spice simulation

Digital flow
- Lower accuracy requirements
- Treat TSV as a via
- Extraction tool → R(C) model
- Static timing analysis

```
| L    | 15.9pH |
| R    | 0.072 Ω |
| Ls   | 1.95pH |
| Rs   | 0.027 Ω |
| C    | 1601F |
| Csub | 19F |
| Rsub | 591Ω |
```

```
| R    | 0.0572 Ω |
| C    | 711F |
| Csub | 3.9F |
| Rsub | 2700Ω |
```

Si Substrate
3D IC Test Challenges and Mentor Approaches

- Known good die prior to 3D packaging
 - Thorough tests and contactless IO tests

- Package level test generation
 - Retarget BIST and scan patterns from die level

- Die to die interconnect test
 - Simple boundary scan structure at IO

- External RAM test
 - Test through PHY on logic die

- Partial stack test?
 - Possible with pattern retargeting, contactless IO test, and interconnect test
Tessent® 3D Test Solutions

- Based on plug-and-play principles
 - Pattern retargeting, common TAP structure in each die

- TAP as the common interface
 - Same patterns and TAP interface for wafer, individually packaged die, partial stack, and 3D package

- IJTAG enables flexibility for changing requirements

- Minimize DFT work at the 3D package level
 - Common die level test structures
 - All scan ATPG and BIST performed at the die level and retargeted

MAX-3D Design Suite

- **MAX-3D** for true 3-dimensional layout, supporting multiple distinct technology files for Through-Silicon Via 3D wafer-stack and interposer design.
- **MAX-3D TSV Placer** for automatically locating, optimizing and placing TSVs.
- **MAX-3D Path Finder** to explore viability of interposer or stacked-die implementations.
MAX-3D Viewed in 3D Mode
3D-IC Status At Synopsys

✓ Committed to supporting 3D-IC EDA tools, technologies, and flows for implementation, test, and verification
✓ 3D support integrated throughout our Galaxy tool set
✓ Both silicon interposer (2.5D) and stacked-die (3D) designs supported
✓ Driving the IEEE P1838 Standard for Test Access Architecture for Three-Dimensional Stacked Integrated Circuits (Synopsys Co-Chair)
✓ http://www.synopsys.com/Solutions/EndSolutions/3D-IC-Solutions/Pages/default.aspx
Foundry-Certified 3D-IC Support

• Achieved Reference Flow foundry certification for TSMC (2.5D and 3D) and GlobalFoundries (2.5D)

• Introduction

• Why do we need 2.5D/3D Technology?
 – Business reasons
 – Technical considerations

• 2.5D/3D key benefits and challenges
 – Application-specific benefits
 – Additional design challenges

• 2.5D/3D EDA vendor updates
 – Si2 Open 3D TAB
 – Ansys, Atrenta, Cadence, Docea, eSystem, Mentor, MicroMagic, Synopsys

• **Summary, Q & A**
Summary

• 2D to 2.5D/3D shift is happening now
• Cooperation & Standards will accelerate transition

• 2.5D/3D-ICs need 2D-ICs as building blocks

• EDA is small, but very important for the EcoSystem
 — It’s the bridge from idea to product manufacturing
 — EDA reduces risk, TTM, IC cost and assures reliability
 — IP blocks for SoCs ➔➔➔ Die-level IP for 2.5D/3D-ICs

• Q & A
APPENDIX
Escape 2 ASIC Examples for 2.5/3D-IC Books

- **Handbook of 3D Integration: Volume 3 – 3D Process Technology** by Phil Garrou, Mitsumasa Koyanagi and Peter Ramm (June 2014)
- **Design and Modeling for 3DICs and Interposers** by Madhavan Swaminathan and Ki Jin Han (Jan 2014)
- **Design-for-Test and Test Optimization Techniques for TSV-based 3D Stacked ICs** by Brandon Noia and Krishnendu Chakrabarty (2013)
- **Advanced Flip Chip Packaging** by Ho-Ming Tong, Yi-Shao Lai and C.P. Wong (Apr 4, 2013)
- **Designing TSVs for 3D Integrated Circuits** (SpringerBriefs in Electrical and Computer Engineering) by Nauman Khan, Soha Hassoun (2012)
- **Through-Silicon Vias for 3D Integration** by John Lau (Sep 20, 2012)
- **Electrical Modeling and Design for 3D System Integration: 3D Integrated Circuits and Packaging, Signal Integrity...** by Er-Ping Li (2012)
- **Semiconductor Packaging: Materials Interaction and Reliability** by Andrea and Chen (2012)
- **Handbook of Wafer Bonding** by Peter Ramm, James Jian-Qiang Lu and Maaike M. V. Taklo (2012)
- **Stress Management for 3D ICs Using Through Silicon Vias:: International Workshop on Stress Management for 3D ICs...** by Ehrenfried Zschech, Riko Radojcic, Valerie Sukharev and Larry Smith (2011)
- **3D IC Stacking Technology** by Banqiu Wu, Ajay Kumar and Sesh Ramaswami (2011)
- **3D Integration for NoC-based SoC Architectures (Integrated Circuits and Systems)** by Abbas Sheibanyrad, Frédéric Pétrot ,Axel Jantsch (2010)
- **Wafer Level 3-D ICs Process Technology (Integrated Circuits and Systems)** by Tan, Chuan Seng, Gutmann, Ronald J. and Reif, L. Rafael (2010)
- **Three Dimensional System Integration: IC Stacking Process and Design** by Papanikolaou, Antonis, Soudris, Dimitrios, Radojcic, Riko (2010)
- **3D Integration for NoC-based SoC Architectures (Integrated Circuits and Systems)** by Abbas Sheibanyrad, Frédéric Pétrot and Axel Jantsch (2010)
- **Ultra-thin Chip Technology and Applications** by Burghartz, Joachim (2010)
- **3-Dimensional VLSI: A 2.5-Dimensional Integration Scheme** by Deng, Yangdong and Maly, Wojciech P. (2010)
- **Three-dimensional Integrated Circuit Design (Systems on Silicon)** by Pavlidis, Vasileios F. and Friedman, Eby G. (2010)
Major Conferences with 2.5D/3D Content

European 3D TSV Summit
20-22 January 2014, Grenoble, France

International Solid-State Circuits Conference (ISSCC)
9-13 February 2014, San Francisco, CA

International Symposium on Quality Electronic Design (ISQED)
10-12 March 2014, Santa Clara, CA

IMAPS Device Packaging Conference
11-13 March 2014, Scottsdale/Fountain Hills, AZ

Design, Automation, and Test in Europe (DATE)
24-28 March 2014, Dresden, Germany

Electronic Components and Technology Conference (ECTC)
27-30 May 2014, Lake Buena Vista, FL

Design Automation Conference (DAC)
1-5 June 2014, Austin, TX

SEMICON West
8-10 July 2014, San Francisco, CA

IEEE International System-on-Chip Conference
3-5 September 2014, Las Vegas, NV

SEMICON Europa and Advanced Packaging Conference
9-11 October 2014, Dresden, Germany

International Symposium on Microelectronics (IMAPS)
13-16 October 2014, San Diego, CA

International Wafer-Level Packaging (IWLPC)
11-13 November 2014, San Jose CA

3D Architectures for Semiconductor Integration and Packaging (3D ASIP)
10-12 December 2014, Burlingame, CA