Verification and Extraction Solutions for 3D Stacks

Dusan Petranovic
Interconnect Modeling Technologist
Design2Silicon Division
Outline

- Verification and extraction solutions
- Issues in TSV modeling
- TSV modeling approaches
- Fast Field Solver Based TSV Extraction
- Inter-die extraction
3D Stack Verification Solution

- Minimal disruption to existing verification flows
- Maintain standard DRC, LVS, PEX verification processes
 - Verify independent die/interposer
- Introduce 3D interface verification solution
 - Verify physical: offset, rotation, scaling, etc.
 - Trace connectivity of interposer, or die, to die
- Good for 2.D (interposer based) and full 3D configurations, analog and digital flows
MG Stack Verification Flow

Calibre 3DSTACK

- Verify with micro-bumps are physically aligned
- Verify proper electrical connectivity through die2die and die2interposer interfaces

Calibre xRC/xACT3D

- Extract parasitics of Dies and Interposer interconnect
- Insert provided TSV circuit (Stand Alone TSV Model) into integrated parasitics/TSV netlists, or extract TSV
3DIC Flows and models for Analog and Digital

Analog flow
- Requires more accurate TSV model
- Treat TSV as a LVS device
- LVS device described by Spice subcircuit
- Spice simulation

Digital flow
- Lower accuracy requirements
- Treat TSV as a via
- Extraction tool generates R(C) model
 - Can be replaced by provided model
- Static timing analysis

- Simpler RC model
- Inductors are ignored in digital flow
Issues in Stand Alone TSV Model Based Solution

- **Solutions based on provided TSV model**
 - TSV as LVS device or as a VIA
 - Circuit for TSV provided
 - Typically obtained by S-parameter measurements and circuit parameter extraction
 - Model of arbitrary complexity supported for TSV in analog simulation
 - Double-sided die front and back metal parasitic extraction
 - Sufficiently good for some applications (regular layout, no RDL, low density TSVs)

- **Problems with the stand alone TSV model solutions**
 - Not adequate for high density, high frequency applications
 - Problem with non-uniform environment around the TSVs
 - Does not account for TSV interactions with other TSVs, interconnect, devices
Issues in TSV Modeling

- **Depletion region effects**
 - TSD or TSV
 - Nonlinear behavior; Capacitance vs. voltage across TSV
 - Frequency dependence
 - Strong non-linear frequency dependence

- **Interactions between the TSVs**
 - Capacitive and Inductive couplings

- **Interaction between TSV and interconnect**
 - Interactions with RDL and metal lines

- **Impact of TSVs on device performance**
 - Proper substrate description and modeling is needed
Alternative Modeling Approaches

- Single TSV models
 - Advantage
 - Easy to integrate into a flow; Sufficient for present needs
 - Challenges
 - Not adequate for high density, high frequency applications

- Compact parametrized models
 - Advantage
 - Can account for some interactions; Faster than FS
 - Challenges
 - Hard to account for all situations, to parameterize for all important variables

- Field solver approach
 - Advantage
 - Most accurate
 - Challenges
 - Performance; Integration
Compact Models, Examples

Model - foundry

- Stand alone TSV models provided for typical geometry and material properties
- Coupling parasitics dependent on spacing and frequency
- C_{eff} needed for STA

Model - academia

- Parametrizes TSV parasitics and Cap and Ind couplings
- Takes into account environment
Limitations of Compact models

- Calculated the mutual capacitance between TSV 1 and TSV 2:
 - Case 1: TSV 3 and TSV 4 are not present in layout
 - Case 2: TSV 4 is not present in layout
 - Case 3: All 4 of the TSV’s are present

- Very strong dependence of capacitance on the environment
Attributes of MG FS-based TSV Extraction

- Field Solver Based Solution
 - Ensures accuracy

- Quasi-Static Capacitance Solver
 - Frequency Dependent Capacitance/Conductance

- Quasi-static Inductance Solver
 - Frequency Dependent Resistance/Inductance

- Integration to circuit verification flow
 - Minimum Changes to the Input Side
 - Output: Spice Netlist of frequency independent elements

- High accuracy

- Capability of Almost Linear Complexity of the field solver
MG Solution For 3D-IC Extraction (Engine)

```plaintext
TOW = my_tow {
    measured_from = BM1
    measured_to = M1
    radius = 3
    hollow_radius = 0
    height = 52.6565
    top_enclosure = 5
    bot_enclosure = 5
    resistivity = 2
    depletion_width = 0
    insulator = {{0.3, 5.2}}
}

substrate = psub {
    zbottom = -50
    ztop = -0.7
    resistivity = 101800
    eps = 11.9
}

well = psub_tw {
    zbottom = -0.7
    thickness = 0.7
    resistivity = 100
    eps = 11.9
}

conductor = BM1 {
    thickness = 10
    min_width = 0.045
    min_spacing = 0.045
    extra_width = 0.046846
    resistivity = 0.3
}

dielectric = Underfill {
    thickness = 10
    eps = 3.3
    diel_type = planar
}
```

The FS is run for all the frequency points.

The netlist mimics the behavior of the frequency dependent data generated by the FS.
MG Solution For 3D-IC Extraction (Flow)

1. Rules
 - GDS
 - PEX Rules
2. LVS
3. xRC/xACT
 - xACT TSV
 - Formatter
 - Final Netlist
4. PHDB
5. PDB
Output:
Netlist of frequency-independent linear elements. Values of those elements are computed by fitting the frequency dependent results of the field solver.
Engagements and Accuracy Results

- Engaged with major foundries and customers
- Working on interposers-based (2.5D) and true 3D stacks
- Test chips and real designs
- Accuracy results (compared with full wave solvers)
- Performance very good; To be further improved w/parallelization and pattern matching
Insertion Loss, Reflection, Insulation

MG vs. Ref, dbS1,2 (port_m=1, port_n=2) and dbS7,8 (port_m=7, port_n=8)

MG vs. Ref, dbS1,1 (port_m=1, port_n=1) and dbS7,7 (port_m=7, port_n=7)

MG vs. Ref, dbS1,7 (port_m=1, port_n=7)

TSV1: port1, port2
TSV2: port3, port4
TSV3: port5, port6
TSV4: port7, port8
TSV5: port9, port10
TSV6: port11, port12
TSV7: port13, port14
xACT-TSV Performance

- Performance for Wide I/O Application

- 1200 TSV + Cu-Pillars Performance Improvement
 - Q1 2013: 0h24min

- It now takes less than a 1sec to extract TSV, all its interactions and do netlisting. There is loot of room for improvement by parallelization and “pattern matching”
Inter-die interactions

- Inter die Capacitive coupling
 - might not be negligible between the dies, especially in Face-to-Face connection

- Magnetic coupling between the dies
 - The dies are getting closer together
 - Overlapping loops between the dies

- Full stack IR drop is needed
 - As number of TSVs is increasing the interactions are becoming stronger and IR drop analysis has to be done simultaneously for the entire stack

- Inter die paths
 - the paths go across the dies and LVS, extraction and simulation have to go across the dies.
Dies Interface

- Bump/Pillar bonding is common

- Bump/Pillar modeling, interactions and shielding

- Other bonding techniques (not of interest for this work)
Inter-die description

- Describe geometry and materials for inter-die region
 - Die –to die
 - Die –to- interposer
 - Die(or interposer) to package

- Geometrical
 - Distance between the dies
 - Pillars
 - Bumps
 - Micro-bumps
 - C4s

- Material
 - Inter die material properties (usually under-fill)
 - Material properties of the pillars and bumps

- MIPT is extended for the die bonding description
Enabling 3D Stack parasitic extraction

- Options:
 - Flat MIPT
 - Would not be practical
 - Hierarchical MIPT
 - Individual die + Inter-die area MIPTs + top level description
 - Expanded single die MIPT
 - Would include single chip MIPT + above and below inter-die + pillars/bumps + specified number of adjacent dies layers
 - Expanded inter-die MIPT
 - Inter-die + pillar/bumps + specified number of adjacent dies layers

- Incremental calibration
- FS extract the interfaces (and the TSVs)
- Rule based tool extracts interconnect
- Tool produces system level netlist with parasitics
Summary

- **3D stacking is reality**
 - Lot of recent activities and announcements
 - TSMC, Samsung, GF, UMC, Tezzaron,...
 - 2.5D and 3D configurations, various strategies and business models
 - Volume production expected in 2014/15

- **There is need for accurate TSV modeling, including substrate and interactions**
 - Various solution proposed: stand alone TSV, parametrized models, ...
 - Mentor’s field solver based extraction: accurate and fast

- **Chip interface modeling is now being considered**
 - Fast inter-die links
 - Interface description and parasitic extraction
 - System level netlist and simulation

- **Collaborative partnerships are crucial**
 - Early cooperation eliminates redundant efforts and improves TTM
 - Results in timely, differentiating solutions