Multi-Die ASIC SiP (System in Package) Manufacturing
Asim Salim
VP Mfg. Operations

- 20+ experience in Semiconductor Operations Engineering (Product Engineering, Device Physics, Reliability, Supply Chain)
- Early adopter of SiPs – shipped >5M mobile graphics processors with DDR KGD memories in 1999
Multi-Die ASIC SiP (System in Package) Overview

First ASIC-vendor to bring 2.5D to prototype silicon (Avatar) Awarded best chip-design at ARM TechCon 2013, Santa Clara

Why 2.5D has a future → Memory Wall

- Processing can see 50-75% idle times
- CPU performance is increasing 4x-8x compared to memory performance
- Power is a big issue
 - HBM uses wide-IO to reduce frequency → lower power
- IO space is limited (packaging)
 - Memory cannot become wider
- Faster data
 - USB, PCIe, SATA, all are faster now
 - Multiple interfaces vie for same DRAM
 - Larger on-chip storage is needed
 - Video/graphics is the biggest contributor

High Bandwidth Memory

- In-house design, Hard-IP
- Leveraging 2.5D die2die “channel” experience from Avatar
- e.g. on Interposer interconnect electricals, ESD, DfT, etc.
- CMOS IO driver, 1GHz/2Gbps DDR with light output loading (1 – 8mm interposer trace)
- Electrically compatible with JEDEC HBM DRAM spec
- TSMC 16FF-GL Implementation
Avatar 2.5D Solution Demonstration

Avatar logic die
- 2 Dies of an ARM Dual-Core A9 SoC on 28nm process

TSV Si Interposer
- “65-nm” 4 Front-side, 1 Back-side metal interposer

Package Assembly
- Assemble 2 die on interposer, and placement on FlipChip package substrate

High Level Goals
- Develop a complete 2.5D KGD solution
- Demonstrate reusable portfolio of verified silicon dies with a higher level of chip abstraction

SysC Modeling
- RTL design, Verification

Demo Board Hardware and software development
- P & R,GDSII

Custom die-to-die IO
- Compact, 2Gbps signalling, fit under ubump.

Reliability testing
- Thermal, Mechanical

Interposer + Cap
w/AVATAR
w/Underfill
Lid attach
Building the Ecosystem

<table>
<thead>
<tr>
<th>Foundries</th>
<th>Interposer Foundries</th>
<th>OSATs</th>
<th>Semi’s IP Houses Standard. Committees</th>
<th>KGD vendors</th>
<th>DFT/Test</th>
<th>EDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaboration with assembly houses (OSATs) for TSV/Interposer construction</td>
<td>Traditional Fabs: TSMC, GF, UMC</td>
<td>ESD guidance</td>
<td>Interposer optimized D2D interfaces</td>
<td>Memory High Bandwidth DRAM Stack KGD</td>
<td>e.g. IEEE P1838 Working Group</td>
<td>Area-IO floor planning, die P&R, integration, and verification</td>
</tr>
<tr>
<td>Models and PDK for Interposer silicon process e.g. for P&R, extraction and physical verification</td>
<td>Specialized Fabs: Innotera, Tezzaron</td>
<td>Test tooling, e.g. Microbump wafer probing</td>
<td>Wide-IO and HBM memory controllers, etc.</td>
<td>Specialized IP High speed SERDES</td>
<td>Fine-pitch probe technology for probing microbumps</td>
<td>Power, EM, thermal modeling, and ESD analysis</td>
</tr>
<tr>
<td>TSMC, Global Foundries</td>
<td>Organic Interposer: Kyocera</td>
<td>Detailed package reliability</td>
<td></td>
<td></td>
<td></td>
<td>2.5D ATPG</td>
</tr>
</tbody>
</table>

Organic Interposer: Kyocera

Traditional Fabs: TSMC, GF, UMC

Specialized Fabs: Innotera, Tezzaron

Memory: High Bandwidth DRAM Stack KGD

Specialized IP: High speed SERDES

Interposer optimized D2D interfaces

Wide-IO and HBM memory controllers, etc.

Detailed package reliability

Test tooling, e.g. Microbump wafer probing

ESD guidance

Area-IO floor planning, die P&R, integration, and verification

Fine-pitch probe technology for probing microbumps

Power, EM, thermal modeling, and ESD analysis

2.5D ATPG
Additional Benefits Of 2.5D Based Design

- Yield Improvement for large SoC die
- Overall power improvement by mixing slow and fast parts
- Risk and Cost improvement due to process node mix
- Die partitioning and optimization for analog, performance, power management, etc.
- Integrating High Bandwidth Memory, flash, or other memory technologies
Challenges

Foundries
- Microbumping,
- > Interposers exceeding reticle size
- Reliability
- Cost

Interposer Foundries
- Keep Costs Low
- Optimize Number of Metal Layers
- Integrate passives

OSATs
- Low ESD environment
- Wafer level processing techniques
- Large stacked package reliability
- Costs

Semi’s IP Houses
- Standard. Committees
- New additions and requirements (D2D IOs, ESD)
- new players

KGD vendors
- Standards across suppliers on Test/DFT, delivery metrics

DFT/Test
- Probing Microbumps
- Testing out at many different levels
- High-speed testing at probe

EDA
- Integrated tools connecting core die to interposer, package substrates