Raven: A CHISEL designed 28nm RISC-V Vector Processor with Integrated Switched-Capacitor DC-DC Converters & Adaptive Clocking

Yunsup Lee, Brian Zimmer, Andrew Waterman, Alberto Puggelli, Jaehwa Kwak, Ruzica Jevtic, Ben Keller, Stevo Bailey, Milovan Blagojevic, Pi-Feng Chiu, Henry Cook, Rimas Avizienis, Brian Richards, Elad Alon, Borivoje Nikolic, Krste Asanovic, Peter Ateshian*

University of California, Berkeley
*UCB Alumni, Naval Postgraduate School
Take away:
CHISEL = Agile Hardware Development Methodology
BLUF: RISC-V compared to ARM Cortex A5
10% higher in DMIPS/MHz, 49% more area-efficient

Our Physical Design Flow – A novel EDP

CHISEL Source Code/Scala
CHISEL Compiler
RTL Code (Verilog)
Synthesis
Place-and-Route
Gate-level Netlist
Signed-Off Design
Formality
Formal Verification
PrimeTime/StarRC
Static Timing Analysis
VCS Post-PNR
Gate-level Simulation
Hierarchical SYN & PNR
UPF-based MV SYN & PNR
What’s CHISEL?
(Constructing Hardware In a Scala Embedded Language).

CHISEL is a hardware construction language embedded in the high-level programming language Scala. Why? CHISEL enables very rapid SoC design iterations with less work.

A separate Chisel tutorial document provides a gentle introduction to using Chisel, and should be read first. This manual provides a comprehensive overview and specification of the Chisel language, which is really only a set of special class definitions, predefined objects, and usage conventions within Scala. When you write a Chisel program you are actually writing a Scala program. You are parameterizing Verilog/VHDL.

In this manual, we presume that you already understand the basics of Scala. If you are unfamiliar with Scala, we recommend you consult one of the excellent Scala books ([3], [2]).

References

Copyright © 2012-2014 The Regents of the University of California & dash; All Rights Reserved
Motivation

- Energy efficiency constrains everything
 - SoCs are designed with an increasing number of voltage domains for better power management
 - Dynamic voltage & frequency scaling (DVFS)
 - Maximizes energy efficiency meets performance constraints
- Off-chip conversion
 - Few voltage domains
 - Costly off-chip components
 - Slow mode transitions
- On-chip conversion
 - Many domains
 - No off-chip components
 - Fast transitions
Off-chip conversion example

iPhone 6/7

Credits: iFixit
Voltage Regulators $
Primary Power
Management IC PMIC $
Secondary Power
Management IC PMIC $
Raven Project Goals

Build a microprocessor that is:
• Fine-grained DVFS
• High conversion efficiency
Energy-efficient
• Entirely on-chip converter
• Low area overhead
Low-cost
Talk Outline

▪ Motivation/Raven Project Goals
▪ On-Chip Switched-Capacitor DC-DC Converters
▪ Raven3 Chip Architecture
▪ Raven3 Implementation *Rapid CHISEL Iteration- novel EDP*
▪ Raven3 Evaluation
▪ RISC-V Chip Building at UC Berkeley
▪ Summary

For more details on the Switched-Capacitor DC-DC Converters, please take a look at HC23 tutorial “Fully Integrated Switched Capacitor DC-DC Conversion” by Elad Alon
Switched-Capacitor (SC) DC-DC Converters

SC DC-DCC

- Partition capacitor and switches into many “unit cells” for better *analog* modularity
- Keeps the custom design modular
- Makes it easier to floorplan SC DC-DC converter
Traditional Approach: Interleaved Switching

- Switch one unit cell at a time to smooth out voltage ripple
- **Pros**
 - Voltage ripple at the output is suppressed
 - Great for digital designs with fixed frequency clocks
- **Cons**
 - Each unit cell charge shares with other unit cells
 - Causes an efficiency loss beyond typical switching losses
Raven’s Approach: Simultaneous Switching

- Switch all unit cells simultaneously when V_{out} reaches a lower bound V_{ref}
- Add an adaptive clock generator so that clock frequency tracks the voltage ripple

Pros
- Simplifies the design
- No charge sharing losses
- Better energy efficiency

Cons
- Need to deal with big ripple on voltage output
Self-Adjusting Clock Generator

- Replica tracks critical path with voltage ripple
- Controller quantizes clock edge
 (Tunable Replica Path)

DLL 2GHz input, 16 phases

Controller Select closest edge

Tunable Replica Path Vout

Adaptive system clock **Vout**
Reconfigurable SC Converters for DVFS

- Simple lower bound control

Lower-bound Controller Operational Waveform
Raven3 Chip Architecture

- RISC-V is a new, open, and completely free general purpose instruction set architecture (ISA) developed at UC Berkeley starting in 2010
- RISC-V is simple and a clean-slate design
 - The base (enough to boot Linux and run modern software stack) has less than 50 instructions
- RISC-V is modular and has been designed to be flexible and extensible
 - Better integrate accelerators with host cores
• RISC-V software stack
 - GNU tools
 (GCC/Binutils/glibc/newlib/GDB), LLVM/Clang, Linux, Yocto (OpenJDK, Python, Scala)
• Checkout http://riscv.org for more details
Rocket Scalar Core
PC IF ID EX MEM To Vector Accelerator
- 64-bit 5-stage single-issue in-order pipeline
- Design minimizes impact of long clock-to-output delays of SRAMs
- 64-entry BTB, 256-entry BHT, 2-entry RAS
- MMU supports page-based virtual memory
- IEEE 754-2008-compliant FPU
- Supports SP, DP Fused-Multiply-Add (FMA) with HW support for sub-normals
ARM Cortex-A5 vs. RISC-V Rocket

<table>
<thead>
<tr>
<th>Category</th>
<th>ARM Cortex-A5</th>
<th>RISC-V Rocket</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA</td>
<td>32-bit ARM v7</td>
<td>64-bit RISC-V v2 Architecture (32, 64, 128)</td>
</tr>
<tr>
<td></td>
<td>Single-Issue In-Order</td>
<td>Single-Issue In-Order 5-stage</td>
</tr>
<tr>
<td>Performance</td>
<td>1.57 DMIPS/MHz</td>
<td>1.72 DMIPS/MHz</td>
</tr>
<tr>
<td>Process</td>
<td>TSMC 40GPLUS</td>
<td>TSMC 40GPLUS</td>
</tr>
<tr>
<td>Area w/o Caches</td>
<td>0.27 mm(^2)</td>
<td>0.14 mm(^2)</td>
</tr>
<tr>
<td></td>
<td>0.53 mm(^2)</td>
<td>0.39 mm(^2)</td>
</tr>
<tr>
<td>Area Efficiency</td>
<td>2.96 DMIPS/MHz/mm(^2)</td>
<td>4.41 DMIPS/MHz/mm(^2)</td>
</tr>
<tr>
<td>Frequency</td>
<td>>1GHz</td>
<td>>1GHz</td>
</tr>
<tr>
<td>Dynamic Power</td>
<td><0.08 mW/MHz</td>
<td>0.034 mW/MHz</td>
</tr>
</tbody>
</table>
- PPA reporting conditions
- 85% utilization, use Dhrystone for benchmark, frequency/power at TT
0.9V 25C, all regular Vt transistors
Overall Result:
10% higher in DMIPS/MHz,
49% more area-efficient
Five 28nm & Six 45nm RISC-V Chips Taped Out So Far

Raven
Raven-1
Raven-2
Raven-3
Raven-3.5
EOS14
EOS16
EOS18
EOS20
EOS22
EOS24
Agile Hardware Development Methodology

C++
FPGA
ASIC Flow
Tape-in
Tape-out
Big Chip
Tape-out

▪ “Tape-in”: Designs that could be taped out
 - LVS clean & DRC sane
 - Pass RTL/gate-level simulation and timing
▪ Fully scripted CHISEL ASIC flow
 - RTL change to chip <1day
 - Get early feedback
 - Automatic nightly regressions
 - Identify source of subtle bugs
▪ Check longer programs on FPGA
▪ Iterate quickly on RTL with using the C++ emulator (Checkout chisel.eecs.berkeley.edu for more details)
Summary

▪ 28nm Raven3 processor features:
 - Fine-grained, wide-range DVFS (20ns, 0.45-1V)
 - Entirely on-chip voltage conversion
 - High system efficiency (>80%)
 - Extreme energy efficiency (34/26 GFLOPS/W)

▪ Key enablers
 - RISC-V, a simple, yet powerful ISA (free and open!)
 - Agile development, build hardware like software
 - Chisel, lets designers do more things with less effort

▪ RISC-V core generators and software tools open-sourced at http://riscv.org

▪ Energy-efficient, low-cost on-chip DC/DC converters are buildable!
Acknowledgements

- Funding: BWRC members, ASPIRE members, DARPA PERFECT Award Number HR0011-12-2-0016,
The following table compares a 32-bit ARM Cortex-A5 core to a 64-bit RISC-V Rocket core built in the same TSMC process (40GPLUS). Fourth column is the ratio of RISC-V Rocket to ARM Cortex-A5. Both use single-instruction-issue, in-order pipelines, yet the RISC-V core is faster, smaller, and uses less power.

<table>
<thead>
<tr>
<th>ISA/Implementation</th>
<th>ARM Cortex-A5</th>
<th>RISC-V Rocket</th>
<th>RIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA Register Width</td>
<td>32 bits</td>
<td>64 bits</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>>1 GHz</td>
<td>>1 GHz</td>
<td>1</td>
</tr>
<tr>
<td>Dhrystone Performance</td>
<td>1.57 DMIPS/MHz</td>
<td>1.72 DMIPS/MHz</td>
<td>1.1</td>
</tr>
<tr>
<td>Area excluding caches</td>
<td>0.27 mm²</td>
<td>0.14 mm²</td>
<td>0.5</td>
</tr>
<tr>
<td>Area with 16KB caches</td>
<td>0.53 mm²</td>
<td>0.39 mm²</td>
<td>0.7</td>
</tr>
<tr>
<td>Area Efficiency</td>
<td>2.96 DMIPS/MHz/mm²</td>
<td>4.41 DMIPS/MHz/mm²</td>
<td>1.5</td>
</tr>
</tbody>
</table>
| Dynamic Power | <0.06 mW/MHz | 0.034 mW/MHz | >= 0.4
Intel ARO, AMD, GRC, Marie Curie FP7, NSF GRFP, NVIDIA Fellowship
- Fabrication donation by STMicroelectronics
- Tom Burd, James Dunn, Olivier Thomas, & Andrei Vladimirescu
Glossary

▪ DVFS: Dynamic Voltage and Frequency Scaling
▪ SC: Switched Capacitor
▪ DLL: Delay-Locked Loop
▪ LDO: Low-Dropout Regulator
▪ FDSOI: Fully Depleted Silicon-on-Insulator
▪ FMA: Fused-Multiply-Add
▪ BTB: Branch Target Buffer
▪ BHT: Branch History Table
▪ RAS: Return Address Stack